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Abstract. Multi-view clustering faces serious challenges in reducing com-
putational and memory demands for large-scale datasets while effectively
extracting structural information from multi-view data. Most existing
methods address algorithmic complexity by introducing anchors, typically
through a two-stage process involving anchor sampling and subsequent
bipartite graph construction. However, the quality of anchor selection
directly affects the performance of the bipartite graph, this two-stage
mechanism lacks mutual optimization, thereby negatively impacting clus-
tering performance. To address these issues, we propose the Adaptive
Unified Framework with Global Anchor Graph for Large-scale Multi-view
Clustering (AUF-LMC). Different from the traditional sample-based an-
chor selection mechanism, AUF-LMC adaptively learns the underlying
anchors across multiple views and builds global bipartite graph on this
basis, so that these two processes can be linked to each other to pro-
mote optimization and improve clustering performance. Furthermore,
we unify all processes within a single framework and apply appropriate
constraints to the bipartite graph. Experimental evaluations demonstrate
that our method delivers superior clustering performance and efficiency,
characterized by fast convergence and robustness on standard datasets.

Keywords: Large-scale Multi-view Clustering · Bipartite Graph Learn-
ing · Learning-based Anchor Selection.

1 Introduction

With the rapid innovation of information technology and the explosion of data
volume, the amount of data collected from various fields and perspectives is
increasing, such as a 3D object can be described by different views or various
devices[4],[20]. It is the complexity of such data that brings the majority of
researchers to think deeply about the multi-view learning method. Among these
methods, Multi-view Clustering (MVC)[8],[16],[7],[9] serves as a crucial technique
that leverages datasets from multiple views to enhance clustering performance.
The complementary information provided by different views is considered a key
factor in improving cluster performance because it reflects the characteristics
of the same data from various aspects. However, existing multi-view clustering
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Fig. 1. The framework of AUF-LMC.

algorithms face serious challenges when processing large-scale datasets, especially
in terms of computational costs and storage requirements.

Traditional Multi-view Subspace Clustering (MVSC) methods attempt to
reveal the intrinsic structure of data by exploring a shared or a set of re-
lated subspaces in each view[15],[13],[23]. These methods typically adopt a
self-representation model, representing each data point as a linear combination
of other points within the same view. Although these approaches have achieved
notable success in multi-view clustering tasks, the self-representation framework’s
computational complexity and memory requirements rapidly increase as the
dataset size expands, severely limiting their scalability and practicality.

In recent years, to address these issues, some strategies[13],[12],[26],[24] based
on anchors have been applied to multi-view clustering. These methods select a
small number of representative data points as anchor points or landmarks to
effectively approximate the original data and reduce complexity. Additionally,
there are studies proposing the use of bipartite graphs[13],[3],[31],[30] to sim-
plify the multi-view clustering problem by connecting data points and anchor
points, effectively reducing the problem’s dimensionality and computational cost.
However, these methods often rely on heuristic anchor selection strategies, such
as k-means or random sampling[2],[25], which may lead to suboptimal anchor
selection, thus adversely affecting the clustering performance.

To address these challenges, this paper proposes a novel multi-view clustering
method termed Adaptive Unified Framework with Global Anchor Graph for
Large-scale Multi-view Clustering(AUF-LMC) that employs a learning-based
anchor selection mechanism to automatically determine the optimal set of anchors,
more accurately capturing the data underlying structure. The framework of AUF-
LMC is shown in Fig. 1. We start by collecting data from multiple views as
input, and each view is assigned a learnable view coefficient. The main part of
the framework is the mutual promotion learning of projection matrix Wi, global
anchor matrix A and global bipartite graph matrix G, and the reconstruction
error measurement of input data is carried out through the learning of these
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three. Then SVD is performed on the basis of the best global bipartite graph
G to obtain spectral embedding H and clustering results. It should be noted
that the learned global bipartite graph have low-rank attributes, which not only
retain the main features of the original data, but also reduce the storage space
and computational complexity of the data. By adaptively learning the underlying
anchor graph across multiple views, AUF-LMC can effectively handle large-scale
datasets and ensure consistency and complementarity among different views by
optimizing a unified objective function. Additionally, the optimization strategy
and computational complexity of AUF-LMC are discussed in detail and the results
of comprehensive testing across a variety of benchmark datasets demonstrate
enhanced clustering outcomes and improved efficiency over current multi-view
clustering techniques.

Broadly, the significant contributions of this paper are as follows:

– Innovative Learning-Based Anchor Selection Mechanism: We intro-
duce a novel multi-view clustering method that employs a learning-based
anchor selection strategy to automatically identify and utilize the data un-
derlying structure for optimal anchor set determination.

– Unified Multi-View Clustering Framework: We designed a adaptive
unified framework that combines global anchor selection, bipartite graph
construction and clustering processes to promote consistency and comple-
mentarity among different views, thereby improving clustering performance
and stability.

– Efficient Four-Step Alternating Optimization Algorithm: Our method
introduces an efficient four-step alternating optimization algorithm. By it-
eratively solving for one variable at a time, this algorithm not only ensures
convergence to an optimal solution but also enhances the method’s efficiency.

2 Related Works

In this section, we initially review the principles of multi-view subspace clustering
and subsequently provide an overview of earlier methodologies for multi-view
clustering that utilize bipartite graphs.

2.1 Multi-view Subspace Clustering

MVSC is based on the assumption that data from multiple sources can provide
complementary information, and if they can be combined synergistically, they
can provide a richer representation for clustering. Among the numerous MVSC
research methods, one popular approach is to utilize self-representative techniques
where data points in each view are expressed as a linear combination of other
points within the same view[15],[13],[18],[19]. This self-expressiveness can be
mathematically formulated as an optimization problem where the goal is to
minimize the reconstruction error subject to certain constraints.



4 Lin Shi et al.

Given multi-view data {Xi}vi=1 where Xi ∈ Rdi×n and di representing the
dimension of the i-th view and n denoting the number of data samples, the objec-
tive is to learn a set of self-expressive matrices {Si}vi=1 that capture the subspace
structure in each view. The global structure is then inferred by integrating these
self-expressive representations. This integration is usually done through a joint
optimization framework, which can be expressed as:

min
Si

v∑
i=1

αi∥Xi −XiSi∥2F + λ

v∑
i=1

∥Si∥∗, (1)

where αi is a view-specific weight and λ is a regularization parameter. ∥·∥2F is
the square of the Frobenius norm, which measures the reconstruction error. ∥·∥∗
represents the nuclear norm (or trace norm), allowing Si to better capture the
low-dimensional subspace structure of the data..

The consensus across multiple views can be achieved by aligning the subspaces
spanned by the self-expressive matrices. This leads to a joint spectral embedding
H ∈ Rn×k obtained by solving the optimization problem:

max
H

Tr

(
H⊤

(
S+ S⊤

2

)
H

)
, s.t. H⊤H = Ik, (2)

where Tr (·) represents the trace function which is the sum of the diagonal
elements of the matrix, S is the concatenated self-expressive matrix from all
views, H⊤H = Ik is an orthogonality constraint ensuring that H is orthogonal,
k is the number of categories. Spectral clustering is then applied to the spectral
embedding H, which serves as the input to algorithms like k-means for final
cluster assignment.

The computational complexity of solving this optimization problem typically
scales with the number of data points and the dimensionality of the embedding
space, which necessitates efficient algorithms capable of handling large-scale data.
Recent advancements in this field have focused on anchor-based methods that
construct anchor graphs to significantly reduce both computational time and
storage requirements, paving the way for scalable MVSC solutions.

2.2 Bipartite Graph for Multi-view Clustering

In the field of MVC, the challenge of processing large-scale datasets necessitates
innovative strategies to reduce computational demands while retaining the rich-
ness of multi-view information. A bipartite graph forms a fundamental construct
in this regard, with its two disjoint sets of nodes—typically, one representing the
data instances and the other embodying the multiple views of the dataset.

In a multi-view dataset with n samples across v views and k clusters, each
view features a matrix Xi ∈ Rdi×n. A multi-view bipartite graph is articulated
as G = ({Xi}vi=1, Υ, {Bi}vi=1), where Υ = {Y1,Y2, ...,Yv} denotes the set of
anchor points. Here, Yi ∈ Rdi×k represents the features of k anchor points in the
i-th view, and Bi ∈ Rk×n is the affinity matrix for the i-th view. This structure
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elegantly captures the essence of multi-view relationships by bridging features
and samples via anchor points, thereby enhancing clustering by focusing on the
most representative connections.

The utilization of bipartite graphs in multi-view clustering is achieved by
mapping the relationships between data points and features across different views
onto the graph. This allows for the exploitation of inter-view connections, which
are crucial for discerning the underlying data structure.

The primary advantage of employing a bipartite graph lies in its ability to
reduce the size of the problem space. Instead of handling a full similarity matrix
of dimension Rn×n, the problem is distilled to dealing with Rk×n, where k is
typically much smaller than n, thus lowering both the storage requirements and
the computational complexity. By sampling a smaller proportion of representative
landmarks, the bipartite graph approach not only captures the essential relation-
ships within the data but also significantly speeds up the clustering process, a
clear benefit for large-scale data analysis where efficiency is paramount.

3 The Proposed Method

In this section, we delve into AUF-LMC in greater detail. Firstly, we elucidate the
underlying motivation behind AUF-LMC to provide a comprehensive introduction
of the model. Subsequently, we elaborate on the optimization methodology
employed by the model with meticulous attention to detail. Lastly, we analyze
the intricacies of its time complexity of AUF-LMC.

3.1 Problem Formulation

In the field of multi-view subspace clustering, popular methods rely on the prin-
ciple of self-representation, representing each data point in the global context
by considering the entire data population. Although this approach delves into
the full range of relationships between data points, it comes with a significant
computational and storage burden. In addition, many studies reduce complexity
by introducing anchors, but traditional anchor-based subspace methods predomi-
nantly hinge on heuristic anchor selection strategies, such as k-means or random
sampling, which are separated from the subsequent construction of bipartitic
graphs and thus degrade clustering performance.

To address these challenges, this papser proposes a learning-based anchor
strategy that automatically learns the optimal set of anchors and abandons
reliance on heuristics to capture the significant features of the data and reflect
the underlying structure of the data. Through this method, we combine anchor
learning and bipartite graph learning closely to promote each other’s optimization
and improve the clustering performance.

The innovation of AUF-LMC lies not only in its anchor selection mechanism
but also in the overarching optimization framework it introduces. The framework
is equipped with an additional regularization term and some suitable constraints,



6 Lin Shi et al.

vital for mitigating model complexity and warding off overfitting. As a result,
the objective function is articulated as:

min
α,Wi,A,G

v∑
i=1

αi
2∥Xi −WiAG∥2F + λ∥G∥2F,

s.t. α⊤1 = 1, W⊤
i Wi = Ik,A

⊤A = Ik,G ≥ 0,G⊤1 = 1.

(3)

In Eq. (3), α = [α1, α2, ..., αv]
⊤ is the vector of all the view coefficients,

Xi ∈ Rdi×n denotes the data matrix for the i-th view, and Wi ∈ Rdi×k is its
corresponding projection matrix. The matrix A ∈ Rk×k is the global anchor
matrix, and G ∈ Rk×n represents the global bipartite graph. The last term serves
as the regularization component, imposing a penalty on the complexity of the
model to mitigate overfitting and promote generalization.

The construction of the anchor graph G sets the stage for our spectral
embedding process. To this end, we utilize the Gram matrix G⊤∆−1G, where
∆ is a diagonal matrix with entries ∆ii =

∑n
j=1 Gji, equating to the sum of

each row in G. The matrix ∆ essentially normalizes G, allowing us to derive the
spectral embedding H in a manner that is more computationally efficient than
traditional eigen-decomposition approaches.

Theorem 1. The right singular vectors of G, which are contained in the matrix
V from the singular value decomposition G = UΣV⊤, are identical to the
eigenvectors of G⊤∆−1G.

Theorem 1 indicates that the spectral embedding H can be efficiently cal-
culated by an SVD on G, necessitating only O(nk2) operations, a substantial
improvement from the classical O(n3). This efficiency facilitates the applica-
tion of our algorithm to extensive datasets, where traditional methods become
computationally impractical.

3.2 Optimization

In this section we cover in detail how to solve the optimization problem of Eq.
(3). We use a four-step alternate optimization algorithm that solves one variable
while fixing the others.

• Solving Wi with fixed A, G and αi.
In such a case, the optimization problem of Eq. (3) w.r.t. Wi can be simplified

to

min
Wi

υ∑
i=1

αi
2 ∥Xi −WiAG∥2F , s.t. W⊤

i Wi = Ik. (4)

Now, to eliminate terms unrelated to Wi, we expand the Frobenius norm
into trace form, and Eq. (4) is equivalent to

min
Wi

υ∑
i=1

α2
iTr((Xi −WiAG)(Xi −WiAG)⊤). (5)
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Then the objective function can be converted to

max
Wi

Tr(W⊤
i Ci), s.t. W⊤

i Wi = Ik, (6)

where Ci = XiG
⊤A⊤. Finally, we perform Singular Value Decomposition(SVD)

for Ci, the optimal Wi can be obtained by calculating UV⊤ according to [27],
where U and V⊤ are the left and right singular values of Ci respectively .

The time complexity required to compute each Ci is O(dink + dik
2), since

there are v views of Ci to compute, calculating C needs O(dnk + dk2) in all.
Additionally, solving Eq. (6) needs O(k2

∑v
i=1 di) = O(k2d), so the total time

complexity of solving W is O(dnk + dk2).
• Solving A with fixed Wi, G and αi.
The objective function w.r.t. A arrives at

min
A

υ∑
i=1

αi
2∥Xi −WiAG∥2F, s.t. A⊤A = Ik. (7)

Analogous to the approach employed for Wi, the above Eq. (7) is equivalently
reformulated into an optimization task prioritizing trace maximization:

max
A

Tr(A⊤D), s.t. A⊤A = Ik, (8)

where D is defined as D =
∑v

i=1 α
2
iW

⊤
i XiG

⊤. The optimal A is identified by
computing the singular value decomposition of D and employing its left and
right singular vectors. The computational demand for updating A involves a
complexity of O(dnk2 + k3), similar to the strategy for the global anchor matrix
A.

• Solving G with fixed Wi, A and αi.
To update the matrix G, while holding matrices Wi, A, and coefficients

αi fixed, we consider an augmented objective that includes a regularization
component. The optimization task is formalized as follows:

min
G

v∑
i=1

α2
i ∥Xi −WiAG∥2F + λ ∥G∥2F , s.t. G ≥ 0,G⊤1 = 1. (9)

The optimization framework for G can be rephrased as a Quadratic Program-
ming (QP) formulation:

min
G:,j

1

2
G⊤

:,jMG:,j + f⊤G:,j , s.t. G⊤
:,j1 = 1,G:,j ≥ 0, (10)

where the matrix M and vector f are intricately defined to incorporate the
regularization effect. Specifically, matrix N is first computed as N = 2

∑v
i=1 αiI+

2λI, which is then symmetrized to form M by averaging it with its transpose,
M = (N+N⊤)/2. Vector f is determined by aggregating the contributions from
all views, f = −2

∑v
i=1 X

⊤
i[:,j]WiA.
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This iterative method is realized by executing the QP solver for each row of
G, which is a k-dimensional vector, and hence the overall time complexity for
this sub-problem is O(nk3).

• Solving αi with fixed Wi, A and G.
The objective is to minimize the weighted sum of squared norms subject to a

normalization constraint on the coefficients. Formally, the problem is stated as
follows:

min
α

v∑
i=1

α2
i ξ

2
i , s.t. α⊤1 = 1, αi ≥ 0, (11)

where ξi represents the Frobenius norm of the residual matrix for the i-th view,
expressed as ξi = ∥Xi −WiAG∥F. Employing the Cauchy-Schwarz inequality,
an analytic solution for the optimal αi is derived as:

αi =

1
ξi∑v
i=1

1
ξi

. (12)

Algorithm 1 AUF-LMC

1: Input: Input v views dataset {Xi}vi=1, the number of cluster k and λ.
2: Initialize: Initialize W,A,G. Initialize αi with

1
v
.

3: while not converged do
4: Solving Wi by Eq. (6).
5: Solving A by Eq. (8).
6: Solving G by Eq. (10).
7: Solving αi by Eq. (12).
8: end while
9: Get the spectral embedding H by performing SVD on G.

The whole procedure of AUF-LMC is summarized in Algorithm 1. We use
the spectral embedding H and k-means to obtain the final clustering result.

3.3 Time complexity analysis

The computational complexity of the proposed model is comprehensively analyzed
by dissecting each step of the optimization process.

• Complexity of solving Wi.
The time complexity required to compute the matrix Ci = XiG

⊤A⊤ is
O(dink+dik

2). The Singular Value Decomposition (SVD) of Ci requires O(dik
2)

time, given that Ci is a di × k matrix and the dominant cost is for k singular
values and vectors. The subsequent multiplication of matrices to update Wi

necessitates O(dik
2) operations, considering the product of a di × k and a k × k

matrix.
• Complexity of solving A.
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The time complexity required to compute the matrix D =
∑v

i=1 α
2
iW

⊤
i XiZ

⊤

isO(dink+nk2). The SVD needed for updatingA has a computational complexity
of O(k3), due to the decomposition of a k × k matrix D. Additional O(k3) time
is required for the matrix multiplication involved in this step.

• Complexity of solving G.

Solving the Quadratic Programming (QP) problem for G has a complexity
of O(nk3), which accrues for each column across all samples, dominated by the
inversion required in the optimization process.

• Complexity of solving αi.

The computation of αi is a direct operation and hence incurs only O(1)
complexity.

Aggregating the complexities from each step, the total time cost T for the
optimization phase can be expressed as:

T =

v∑
i=1

O(dink + dik
2) +O(dink + nk2 + k3) +O(nk3) +O(1).

This summation simplifies to O((d+ di)nk + dk2 + nk2 + k3 + nk3), where
d =

∑v
i=1 di is the dimension of all views. Assuming that k are significantly

smaller than n and di, the complexity can be approximated as O(nk3), showing a
quasi-linear relationship with the number of samples, thus reinforcing the overall
efficiency of the algorithm.

4 Experiments

4.1 Experimental Setup

Benchmark Datasets. In the experimental evaluation of multi-view clustering
algorithms, a diverse range of datasets are pivotal for a comprehensive analysis.
The datasets employed in our study are shown in Table 1. MNIST is a large-scale
handwritten numeric data set that is widely used in many fields[17],[21],[29].

Table 1. The multi-view datasets used in the experiment.

Dataset Samples View Class Features

Caltech101-20[14] 2,386 6 20 48/40/254/1,984/512/928
Caltech101-all[6] 9,144 5 102 48/40/254/512/928

CCV 6,773 3 20 20/20/20
NUSWIDEOBJ[5] 30,000 5 31 65/226/145/74/129

MNIST 60,000 3 10 342/1,024/64
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Table 2. The clustering results of various multi-view clustering algorithms were com-
pared, the evaluation indexes include ACC, NMI, Purity and F-score, the higher the
better. Bold in the table indicates the best result, and ’-’ indicates out of memory.

Dataset Caltech101-20

Metric
Method

PMSC mPAC MLRSSC AMGL SFMC RMKM BMVC LMVSC FPMVS Ours

ACC 0.5981 0.4983 0.3600 0.1876 0.5947 0.3961 0.1769 0.4304 0.6547 0.6706
NMI 0.5244 0.5855 0.2008 0.1101 0.5641 0.5034 0.1708 0.5553 0.6326 0.6450
Purity 0.7125 0.6622 0.4476 0.6313 0.7045 0.3150 0.4166 0.7125 0.7368 0.7519
Fscore 0.4329 0.4806 0.3069 0.4661 0.4303 0.2799 0.1197 0.3414 0.6905 0.6990

Caltech101-all

ACC - 0.2031 0.1365 0.0359 0.1777 0.1650 0.2123 0.2005 0.3015 0.3199
NMI - 0.3809 0.1066 0.0187 0.2613 0.3494 0.4246 0.4155 0.3549 0.4162
Purity - 0.2914 0.1371 0.4311 0.2430 0.0875 0.4124 0.3975 0.3460 0.3788
Fscore - 0.1254 0.0815 0.3617 0.0462 0.0548 0.1854 0.1586 0.2326 0.3057

CCV

ACC - 0.2311 0.1259 0.1102 0.1156 0.1584 0.1326 0.2014 0.2399 0.2410
NMI - 0.1744 0.0471 0.0758 0.0346 0.1136 0.0763 0.1657 0.1760 0.1808
Purity - 0.2917 0.1307 0.2021 0.1194 0.1902 0.1652 0.2396 0.2605 0.2653
Fscore - 0.1346 0.1095 0.1215 0.1085 0.1084 0.0826 0.1194 0.1419 0.1417

NUSWIDEOBJ

ACC - - - - 0.1221 0.1193 0.1299 0.1583 0.1946 0.1961
NMI - - - - 0.0095 0.0926 0.1290 0.1337 0.1351 0.1354
Purity - - - - 0.1227 0.2062 0.2333 0.2488 0.2382 0.2376
Fscore - - - - 0.1140 0.0750 0.0881 0.0990 0.1372 0.1372

MNIST

ACC - - - - - 0.8621 0.4595 0.9852 0.9884 0.9884
NMI - - - - - 0.9209 0.3959 0.9576 0.9651 0.9651
Purity - - - - - 0.8988 0.4766 0.9852 0.9884 0.9884
Fscore - - - - - 0.8728 0.3357 0.9704 0.9768 0.9768

Compared Multi-View Clustering Algorithms We benchmark our al-
gorithm against a suite of nine established multi-view clustering techniques:
PMSC[11], mPAC[10], MLRSSC[1], AMGL[22], SFMC[13], RMKM[3], BMVC[31],
LMVSC[12] and FPMVS[28]. In these methods, PMSC, mPAC, and MLRSSC
are categorized under classic subspace-based multi-view clustering techniques.
LMVSC, FPMVS, along with our proposed method, are categorized under anchor-
based subspace methodologies. Lastly, methods like SFMC, RMKM, and BMVC
represent approaches that incorporate bipartite graphs, k-means, or binarization
to address the challenges of multi-view clustering on a large scale.

4.2 Experimental Result

Clustering Performance The comprehensive evaluation of our algorithm
demonstrates exceptional performance in the realm of multi-view clustering, as
detailed in Table 2. Our approach significantly surpasses competing method-
ologies across the various datasets examined. This is particularly evident in
the Caltech101-20 dataset, where our algorithm achieved the highest scores in
all metrics, reinforcing its capability to discern and adapt to the intrinsic clus-
ter structures within the data.Furthermore, when considering the larger-scale
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Fig. 2. Visualization of learned view coefficients on individual datasets.

datasets such as CCV and NUS-WIDE-OBJ, our method sustains high perfor-
mance, indicative of its robustness and adaptability to different data complexities.
It is worth noting that the MNIST dataset, which presents its unique challenges
due to high dimensionality, saw our approach achieving impressive results that
underscore its effectiveness in feature distinction critical for clustering tasks.

The consistency of these results across multiple datasets attests to the algo-
rithm’s versatility and confirms its potential for practical applications in various
multi-view learning scenarios. The improvements in clustering performance, par-
ticularly noted in ACC, demonstrate the algorithm’s capacity to leverage latent
information across multiple views efficiently.

The Learned View Coefficients Fig. 2 illustrates the learned view coefficients
for each of the five benchmark datasets. The distribution of weights across
different views highlights the contributions of each view to the overall clustering
performance. In datasets such as Caltech101-20 and Caltech101-all, the weight
distribution is relatively even among the first three views, suggesting that these
views contribute similarly to capturing the data’s intrinsic structure. In contrast,
for the MNIST dataset, view 3 seems to dominate, indicating that this view
might carry more discriminative features that are crucial for clustering in this
particular dataset.Overall, the visualization of learned view weights underscores
our algorithm’s ability to adaptively assign importance to different views based
on their relevance and contribution to the clustering task. This adaptive learning
of view-specific weights is pivotal, as it not only enhances clustering accuracy
but also offers insights into the significance of each view within the context of
multi-view learning. The results across various datasets confirm the versatility
of our approach, demonstrating its capability to handle diverse and complex
multi-view data efficiently.
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Fig. 3. Visualization of convergence of the objective function on various datasets.

Convergence The convergence performance of AUF-LMC is visualized across
five benchmark datasets, as shown in the appended Fig. 3. From the observed
trends, it is evident that our method achieves rapid convergence, which signifies
the efficiency of the learning-based anchor selection and the robustness of the
optimization process.Across the datasets, the objective function values exhibit
a sharp decline in the initial iterations, followed by a plateau, indicating that
our method swiftly approaches an optimal or near-optimal solution. This quick
stabilization is a testament to the algorithm’s ability to effectively integrate
the complementary information from different views and the efficacy of the
regularization term in achieving a consistent clustering structure.

5 Conclusion

In this paper, a novel multi-view clustering method termed Adaptive Unified
Framework with Global Anchor Graph for Large-scale Multi-view Clustering(AUF-
LMC) based on global anchor graph is proposed. AUF-LMC integrates learning-
based anchor selection with multi-view bipartites to enhance multi-view clustering
and better mine the underlying structure of data. We design a unified framework,
which greatly improves the consistency and complementarity between different
views, and enhances the generalization ability of our model through a series of
constraint strategies. In addition, we design a detailed optimization method for
the algorithm and prove its high efficiency in theory. Our extensive experimental
validation on multiple standard datasets shows that our approach not only stands
out in terms of clustering accuracy, but also demonstrates significant efficiency
and scalability. These results confirm that AUF-LMC is well suited to handle
complex large-scale multi-view data analysis and pave the way for future practical
applications in various fields.
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