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TCGNet: Type-Correlation Guidance
for Salient Object Detection

Yi Liu , Ling Zhou, Gengshen Wu , Member, IEEE, Shoukun Xu, and Jungong Han , Senior Member, IEEE

Abstract— Contrast and part-whole relations induced by deep
neural networks like Convolutional Neural Networks (CNNs) and
Capsule Networks (CapsNets) have been known as two types
of semantic cues for deep salient object detection. However,
few works pay attention to their complementary properties in
the context of saliency prediction. In this paper, we probe into
this issue and propose a Type-Correlation Guidance Network
(TCGNet) for salient object detection. Specifically, a Multi-
Type Cue Correlation (MTCC) covering CNNs and CapsNets
is designed to extract the contrast and part-whole relational
semantics, respectively. Using MTCC, two correlation matrices
containing complementary information are computed with these
two types of semantics. In return, these correlation matrices are
used to guide the learning of the above semantics to generate
better saliency cues. Besides, a Type Interaction Attention (TIA)
is developed to interact semantics from CNNs and CapsNets
for the aim of saliency prediction. Experiments and analysis on
five benchmarks show the superiority of the proposed approach.
Codes has been released on https://github.com/liuyi1989/TCGNet.

Index Terms— Salient object detection, part-object relation-
ship, capsule network.

I. INTRODUCTION

THE task of salient object detection imitates the human
visual perception to automatically identify and segment

attractive regions or objects. It can help capture the informative
regions that contain the main scene semantics. On account of
its power, salient object detection has served for main scene
understandings, including autonomous driving perception [1],
[2], [3], image retrieval [4], video segmentation [5],
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Fig. 1. Problem statements. (a) Image; (b) GT; (c) Ours; (d) POCINet [18];
(e) PWHCNet [19]; (f) TSPOANet [20]; (g) ITSD [14]; (h) MINet [15]; (i)
GateNet [16]; (j) EGNet [17]. The green, orange, and blue domains include
the contrast methods, the part-whole relational method, and the methods
combining contrast and part-whole relations, respectively.

image cropping [6], semantic segmentation [7], and object
recognition [8]. For example, in an autonomous driving
vision system, salient object detection can rapidly allocate the
attention on the important objects for scene parsing [1], [2],
[9], [10], [11]. The earlier salient object detection methods
mostly extract the hand-crafted features to mine the contrast
regions [12]. The development of deep learning has greatly
broken the bottleneck [13] of hand-crafted approaches and will
continue to bring steady progress.

The deep learning based salient object detection methods
mostly rely on deep neural networks, especially Convolutional
Neural Networks (CNNs), to extract the discriminative features
and find the salient regions with high contrast over their
surroundings [13]. They have a genius for capturing the object
details. However, these methods compute the salient regions
within an image individually without considering the inter-
region relations, thereby damaging the object’s wholeness.
For this reason, the performance of previous contrast-based
salient object detectors heavily compromises when handling
real-world complex structures. As can be seen from Fig. 1,
the deep contrast saliency methods, including ITSD [14],
MINet [15], GateNet [16], EGNet [17], cannot produce good
results on complicated scenes, and mostly fail to achieve the
object completeness.

Alternative to the contrast pipeline of deep salient object
detectors, our previous works et al. [20], [21] put forward
the pipeline of part-whole relations for salient object detection
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Fig. 2. Illustration for different interactions between contrast cues and
part-whole relationships. (a) POCINet [18], (b) PWHCNet [19], (c) Ours.
POCINet [18] combines these two cues in the decoder module. PWHCNet [19]
adopts the attention mechanism to integrate them before the decoder module.
Alternatively, we calculate the correlation to interact these two types of
semantics.

endowed by the Capsule Networks (CapsNets) [22], which can
well detect the object’s wholeness. Later on, other attempts,
e.g. ICON [23] and TSPORTNet [21], employ the CapsNets’
semantics as guidance to learn primitive features for saliency
inference. However, using part-whole relations alone will lead
to the loss of object details in complicated scenes, which
can be observed in Fig. 1 that the deep part-whole relational
saliency method, i.e., TSPOANet [20], misses some inner
object details. In essence, contrast and part-whole relations
capture different semantics for the same salient object, e.g.,
contrast is able to highlight the local details while part-
whole relations are good at capturing the object’s wholeness.
Clearly, these two saliency cues can complement to each
other for better salient object detection. To this end, there
are some attempts in the progress. As shown in Fig. 2,
PWHCNet [19] proposes a mutual attention mechanism to
integrate contrast and part-whole relations to detect the more
accurate salient object. POCINet [18] combines these two cues
in an upsampling module to tackle the problem of camouflaged
object detection. Despite its preliminary success, it is still in
its infancy, and there are still some issues to be solved. For
instance, due to the lack of guidance after fusing contrast
cues and part-whole relations, PWHCNet [19] cannot ensure
the integrity of salient objects in the results. On the other
hand, POCINet [18] always causes a blurry border between
foreground and background because of the neglect of the
relevance of these two cues.

In this paper, we delve into the coherence between these two
types of cues, and propose a type-correlation aware mechanism
to enhance their representation power, as shown in Fig. 2(c).
Specifically, we propose a Multi-Type Cues Correlation
(MTCC) module, in which the spatial correlation matrices,
including width and height correlations, dare computed.
In doing so, we intend to excavate the intrinsic relations of
the two saliency cues. On top of that, these two correlation
matrices are utilized to guide the intermediate contrast and
part-whole relational saliency results to generate more accurate
saliency priors, which are in return sreved as guidance to
learn better contrast and part-whole relational features for

saliency prediction. Besides, in the decoder, we develop a
Type Interaction Attention (TIA) to interact the semantics of
CNNs and CapsNets for saliency prediction, in which the
CNNs map is activated to be interacted with the CapsNets
map. Experiments indicate that our pipeline can adequately
engage contrast and part-whole relations for the task of salient
object detection, as can be shown in Fig. 1.

To sum up, the contributions of the paper can be described
as follows:

• In this work, we propose a novel framework termed Type-
Correlation Guidance Network (TCGNet) in the salient
object detection task. The proposed network digs into
the coherence between contrast and part-whole relational
saliency cues, thus improving the detection performance
via enhancing the representation power of two cues
simultaneously. To the best of our knowledge, this is the
first attempt to employ such type of coherence in deep
salient object detection.

• A novel Multi-Type Cues Correlation (MTCC) module
is proposed to obtain better saliency priors by integrating
the correlations of contrast and part-whole relational cues
from CNNs and CapsNets, thus improving the saliency
prediction performance.

• A novel Type Interaction Attention (TIA) mechanism in
the decoder is proposed to let the CNNs and CapsNets
maps interact and guide the generation of saliency maps,
which has been proven to improve performance of salient
object detection.

• Extensive experiments on five datasets show that the
proposed TCGNet can achieve superior performance,
compared to the state-of-the-art baselines, which further
consolidates our contributions.

The paper is organized as follows. Sec. II reviews the related
works. Sec. III describes the details of the proposed method.
Sec. IV evaluates and analyzes for understanding the proposed
method. Sec. V concludes the paper.

II. RELATED WORK

In this section, we will review the most related works,
including CNNs for salient object detection and CapsNets for
salient object detection.

A. CNNs for Salient Object Detection

Deep CNNs have achieved a significant breakthrough in
the task of salient object detection [24], [25], [26], [27],
[28], [29]. At the beginning, an Multi-Layer Perceptron
(MLP) is employed to predict foreground and background.
Zhao et al. [30] used two pathways to extract local and global
context, which was fed into an MLP for foreground and
background classification. Wang et al. [31] relied on an MLP
to predict saliency scores from deep segment-level features.
Later on, the Fully Convolutional Network (FCN) is adopted
to solve the problem of salient object detection. Luo et al. [26]
combined deep local and global cues for saliency detection.
Wang et al. [32] recurrently refined the saliency prediction
from heuristic calculation or prediction of previous time step.
Wang et al. [33] used a stage-wise manner to implement the
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Fig. 3. Overview of our type-correlation guidance network (TCGNet), which consists of an encoder and a decoder. In the encoder, given a three-channel
RGB image, it is fed into an HRNet to extract multi-scale features, which are further to learn rich context information with an ASPP module. After that,
feature maps are fed into a TBIE module to get contrast cues and part-object relationships, which will be subject to correlation analysis in the MTCC module.
Besides, in the decoder, the obtained contrast cues and part-object relationships will be integrated using a TIA module. Finally, a layer-by-layer manner is
employed for upsampling the saliency cues to get the output saliency map.

coarse-to-fine saliency refinement. Liu and Han [34] combined
shallower features using recurrent layers with intermediate
deep supervision for saliency prediction. Su et al. [35] solved
the selectivity-invariance dilemma problem of the salient
object detection task with multiple branches. At the stage
of success of MLP and FCN for salient object detection,
they are combined into a unified framework for salient object
detection with the aim of producing edge-preserving detection
using multi-scale context. Tang and Hu [36] integrated pixel-
level generated by FCN and super-pixel-level saliency for
the final saliency prediction. Feng et al. [28] detected object
boundaries via an attentive feedback network for better salient
object detection. Recently, besides the need for different
networks, many works attempt to solve real-life requirements
for salient object detection, e.g., real time and semantics
understanding. For instance, Zhou et al. [14] constructed a
two-branch decoder and interact with them to generate fast
saliency. Liu et al. [37] explored the potential of pooling
for real-time salient object detection. Cheng et al. [38]
analyzed the semantic information of CNNs based salient
object detection models. Wang et al. [39] identified the salient
object with the guidance of human fixation. Wang et al. [40]
exploited the pyramid attention to focus on the salient regions
and salient edges detection to refine the object boundaries.
Wang et al. [41] learned top-down and bottom-up inference
for saliency prediction. Ke et al. [42] designed a contour-
saliency network with the purpose of enhancing the edge
quality of the salient object. Wang et al. [43] adopted the
boundary sensibility, content integrity, iterative refinement,
and frequency decomposition to enhance the performance for
salient object detection. Lee et al. [44] excluded multi-decoder
structures and minimized the learning parameters usage for
a computationally efficient salient object detector using the
attention guided tracing modules. Wu et al. [45] explored
the high-level feature learning for locating salient objects via

an intuitive extreme downsampling technique. Ma et al. [46]
improved the performance of salient object detection with
broader receptive fields. Jiao et al. [47] devised collaborative
content-dependent networks to find the discriminative objects
with a global context. More reviews about CNNs based salient
object detection can be referred to [13].

Different from these approaches that rely on the discrim-
inative contrast cues of CNNs for salient object detection,
our method involves the part-whole relations explored by
CapsNets to augment the salient object detection performance.

B. CapsNets for Salient Object Detection

While CNNs-based salient object detection methods have
achieved breakthrough performance, they still encounter
issues. For example, CNNs mostly infer the saliency of each
region separately, which will cause failure in object wholeness.
To address this problem, our previous work [20] introduced
CapsNets [22], which can capture the spatial structures
between different object parts, for the task of saliency
prediction, resulting in the task of part-whole visual saliency.
Instead of directly using CapsNets for saliency prediction,
we proposed a two-stream strategy to reduce the complexity of
CapsNets to tackle the dense salient object prediction. Later,
we consolidated our work with a correlation-aware capsule
routing for network training. On top of that, several efforts
are devoted to advocate CapsNets-based part-whole visual
saliency [21], [48]. To solve the heavy computation of the
part-whole relational saliency, Liu et al. [49] disentangled
the horizontal and vertical capsule routing within the capsule
routing algorithm for fast saliency prediction. Besides, a few
works have been devoted to the complementary of CNNs and
CapsNets. For example, [19] involved an attention mechanism
to interact CNNs features and CapsNets features for better
salient object detection. Reference [23] used part-whole
verification to judge whether the part and whole objects

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on December 21,2023 at 03:56:44 UTC from IEEE Xplore.  Restrictions apply. 



4 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

are related. Reference [50] designed a multi-scale capsule-
wise attention to aggregate features and generate fine-grained
prediction maps. Liu et al. [18] integrated the CapsNets
semantics and CNNs features to detect the eye-attracting
objects in the concealed scene.

Different from the existing saliency detection methods
involving CapsNets and CNNs, we design a new interactive
mechanism for these two types of information. Specifically,
we compute the correlations between contrast cues from CNNs
and part-whole relational cues from CapsNets as the saliency
priors to learn better saliency cues. To this end, we develop a
novel attention mechanism to involve these two-type semantics
to infer the saliency.

III. METHODOLOGY

In this section, we will describe the details of the proposed
method.

A. Overview

The overview of the proposed TCGNet is illustrated in
Fig. 3. Given a three-channel RGB image, it is fed into
an HRNet [51] backbone to extract multi-scale and high-
resolution features, which are further fed into an ASPP
module [52] with different dilation rates (1, 6, 12 and 18)
to capture rich context information. Then we fuse all of
the feature maps to obtain the integrated feature maps
(88 × 88 × 128), which are rich in both fine details and
semantic knowledge. Afterwards, the feature maps are sent
into the Two-Branch Information Extraction (TBIE) module
to grab contrast cues and part-whole relationships, which will
be subject to correlation analysis in the Multi-Type Cues
Correlation (MTCC) module. In our decoder, the guided
contrast cues and part-whole relationships will be integrated
in a Type Integration Attention (TIA). Finally, a layer-by-layer
manner is employed for upsampling the decoded saliency cues
to achieve the final output results.

B. Two-Branch Information Extraction (TBIE)

Fig. 4 details the architecture of TBIE, which is composed
of two parallel branches, including the CNNs branch for
contrast cues extraction and the CapsNets branch for part-
whole relational cues exploration.

1) CNNs Branch: CNNs branch is composed of three
stages with the same structure, each of which contains one
convolution layer and ReLU. Each stage of CNN branch is
formulated as follows

Fout = ReLU (B N (Conv(Fin))), (1)

where Fin and Fout represent the input and output of the
convolution stage, respectively. Conv means the convolution
operation. The convolutions in the stage 1 and stage 2 adopt
a 3 × 3 convolution kernel with the stride of 2, while the
convolution in Stage 3 uses a 1 × 1 convolution kernel with
the stride of 1. Additionally, B N and ReLU mean Batchnorm
and ReLU operation, respectively. Finally, we get the contrast
saliency prediction FC S (22 × 22 × 1) via a 1 × 1 convolution
operation on the output feature maps of stage 3.

Fig. 4. Framework of the TBIE module. Stage 1 is obtained by fusing all
the multi-scale feature maps. In the CNN branch, Stage 2 and Stage 3, which
are achieved successively by Stage 1 through the same convolution operation,
generate saliency map with contrast cues by one convolution with a kernel
size of 1 × 1. In the CapsNets branch, Stage 1 is sent into one PrimaryCaps
layers to get capsule features, which will be fed into two ConvCaps layer to
generate features with part-whole relationships.

2) CapsNets Branch: CapsNets branch is purposed to
enhance the object wholeness of feature maps contained by
backbone. This is implemented by CapsNets [22]. To be
specific, we design one Primary Capsule (PrimaryCaps) layer,
one Convolutional Capsule (ConvCaps) layer, and one Class
Capsule (ClassCaps) layer to implement CapsNets.1 Each
layer contains 8 types of capsules. The activation of the
ClassCaps output is used as the capsule features (22 × 22 ×

8 × 1), which is further computed by a convolution to learn
part-whole relational saliency prediction F P O (22 × 22 × 1).

C. Multi-Type Cues Correlation (MTCC)

Using the TBIE module, we obtain the contrast and part-
whole relational cues with different saliency priors, which
prefer to learn the object details and object wholeness,
respectively. Therefore, the relation of these two saliency cues
will benefit the task of salient object detection. To this end,
Fig. 5 designs an MTCC module involving the correlations
of these two types of saliency predictions to improve
their saliency priors. In the following, we will illustrate
the details.

1) Details of MTCC: Suppose I1 and I2 with the same
spatial resolution W × H and the channel size of 1 represent
the two types of saliency prior, including contrast cues and
part-whole relational cues. The spatial correlation for these
two-type cues, including horizontal correlation and vertical
correlation, is chosen to measure the coherence between
these two types of saliency priors. The type correlation
algorithm consists of three steps, including spatial correlation
computation, correlation guidance, and self-attention.

Step 1: Spatial correlation computation.
Spatial correlation contains horizontal correlation and ver-

tical correlation. The horizontal correlation can be computed
by

SCH ∈ ℜ
W×W

= I1 × IT
2 , (2)

1PrimaryCaps, ConvCaps, and ClassCaps layers can be referred to
TSPOANet [20].
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Fig. 5. Framework of the proposed MTCC module. The maps got from
TBIE first obtains horizontal- and vertical-level features through matrix
multiplication, which are used to guide the original feature map through the
element-wise multiplication and addition.

where (·)T represents the transpose operation. Similarly, the
vertical correlation can be computed by

SCV ∈ ℜ
H×H

= IT
1 × I2. (3)

SCH and SCV reveal the spatial correlations between
two types of saliency priors implicitly along the horizontal
dimension and vertical dimension, respectively.

Step 2: Correlation guidance.
The spatial correlation SCH and SCV can be employed to

guide the saliency priors I1 and I2 to improve their saliency
properties. To this end, the guidance can be achieved by the
following computation, i.e.,

I1
′
∈ ℜ

W×H
= SCH × I1 × SCV ,

I2
′
∈ ℜ

W×H
= SCH × I2 × SCV .

(4)

With regard to I1 and I2, I′

1 and I′

2 are strengthened in
saliency extracting with the guidance of two-type correlation
guidance.

Step 3: Self-attention.
To improve the saliency property of two-type saliency

predictions, i.e., I1 and I2, they are self-attended by their
correlation-aware saliency priors, which can be formulated as

I1 = I1 + I1 ⊙ I1
′,

I2 = I2 + I2 ⊙ I2
′.

(5)

I′

1 and I′

2 improve the salient property by involving the
spatial correlation between two types of saliency predictions,
including I1 and I2.

Using Eq. (2), Eq. (3), Eq. (4), and Eq. (5), we can obtain
the type-correlation based saliency predictions F′

C S and F′

P O
from the contrast saliency prediction FC S and the part-whole
relational saliency prediction FP O , respectively.

2) Difference to SCMC [19] and POGU [18]: As shown in
Fig. 5, our MTCC differs from SCMC [19] and POGU [18] by
computing the mutual-type correlation as guidance for two-
type information integration rather than using the self-type
spatial correlation in SCMC [19] or the direct concatenation
of two cues in POGU [18]. Compared to SCMC [19] and
POGU [18], experiments in Sec. IV-C.2 further demonstrate
that the correlation-guided integration strategy in the proposed

MTCC module can efficiently achieve the complementary of
two types of semantics for more accurate saliency inference.

3) Difference to PWHCNet [19]: The difference of our
MTCC and PWHCNet [19] lies in two folds.

First, our work focuses on the decision-level integration,
which is completely different from the feature-level
integration of PWHCNet [19]. As shown in Fig. 5 of [19],
the inputs for PWHCNet [19] are multiple channels of features
maps from contrast cues and part-whole relational cues.
In contrast, as shown in Fig. 5 of this paper, the inputs
for our work are the detection results with one channel
inferred from contrast cues and part-whole relational cues.
It is obvious that PWHCNet [19] focuses on the feature-level
integration of these two types of cues, while our work focuses
on the decision-level integration of these two types of cues.
Compared with the feature-level integration, our decision-level
integration has two advantages: i) The feature-level integration
of PWHCNet [19] is an intermediate-level integration, while
our decision-level integration is a high-level integration,
which helps our work to get more accurate saliency cues
exploration when integrating two types of cues; ii) The feature-
level integration of PWHCNet [19] integrates high-dimension
feature maps, which inevitably generates heavy computation,
while our work integrating two one-channel decision results,
which will be computational efficient, as will be verified
in Table III.

Secondly, our MTCC implements the mutual correlation
for inter-type integration, which is ignored by the self-type
attention of PWHCNet [19]. As shown in the Fig. 5 of [19],
when integrating these two types of cues, PWHCNet [19]
computes two self-attentions, including self-channel attention
for one type of cues and self-spatial attention for the other
type of cues. In essence, since self-channel attention and
self-spatial attention are implemented within one individual
type of cues, named self-type attention, there is no inherent
interaction between these two types of cues. Differently,
in our MTCC, when integrating these two types of cues,
we compute two dimensions of interactive maps, including
horizontal interactive map and vertical interactive map, which
are computed by the mutual correlation between the contrast
inference map and part-whole relational inference map. These
two interactive maps are used to transform the contrast
inference map and part-whole relational inference map to
new versions by matrix multiplication, which have inherent
interaction between these two types of cues. Therefore,
PWHCNet [19] cannot explore the internal interaction between
contrast cues and part-whole relational cues, while our MTCC
indeed catches the inherent interaction between these two
types of cues.

D. Type Interaction Attention (TIA)

1) Motivation: On top of the MTCC module, two saliency
predictions F′

C S and F′

P O corresponding to contrast saliency
and part-whole relational saliency, respectively, are shown in
Fig. 6(d) and (e). It is obvious that F′

C S in Fig. 6(d) tend
to be integrated, while the salient objects detected by F′

P O
in Fig. 6(e) are more pronounced. But F′

C S mainly focuses
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Fig. 6. Illustration for TIA. Comparison of saliency maps before and after
TIA. (a) Image; (b) Ground truth; (c) Saliency maps after TIA; (d) CNN-based
saliency maps (F′

CS) before TIA; (e) CapsNets-based saliency maps (F′

PO)
before TIA.

Fig. 7. TIA module. CNNs Map and CapsNets Map represent the saliency
maps of contrast cues and part-whole relationships obtained from the MTCC
module, respectively. GAP, Conv1d and Sigmoid are the operations of global
average pooling, 1D convolution and activation function, respectively.

on contrast cuts, while part-whole relationships dominate in
F′

P O after guidance after the MTCC module. So F′

C S and
F′

P O can complement to each other. Subsequently, we aim to
utilize attention mechanisms to fuse these two feature maps to
enhance both types of information, which is achieved by TIA.
As shown in Fig. 6(c), the salient objects can be identified and
segment uniformly and wholly using TIA.

2) Details: By the MTCC module, we have obtained
two complementary feature predictions of contrast cues
and part-whole relationships, i.e., F′

C S and F′

P O . In the
following, we will interact these two types of information
for better saliency cues capture. Here, we design an attention
mechanism, named TIA, to this end. Specifically, as shown in
Fig. 7, CNNs saliency prediction map, i.e., F′

C S is followed by
a global average pooling, a convolution with kernel of 1 × 1,
and the Sigmoid activation function, to generate an attention,
which is used to guide the CapsNets prediction map, i.e., F′

P O .
The details of TIA can be formulated as

α = σ(Conv31D(G AP(F′

C S)), (6)
MO =α × F′

P O , (7)

where G AP(·) means global average pooling, Conv31D(·)

means 1D convolution with the kernel size of 3 and σ

represents the Sigmoid activation function. F′

C S and F′

P O
represent two types of feature prediction maps corresponding
to CNNs and CapsNets, respectively. MO means the output
map of TIA.

As shown in Fig. 3, different-scale outputs of TIA are
integrated and upsampled stage-wisely from deep to shallow
for the final saliency prediction.

3) Difference to ECA [53]: The difference between our
TIA and ECA [53] can be concluded as the following
two folds. First, ECA [53] absorbs multi-channel feature
maps2 as inputs, while our TIA treats two types of saliency
prediction maps as inputs. Secondly, ECA [53] enhances
feature representation by a self-attention mechanism, while
our TIA manipulates the interactive attention with respect to
two types of semantics, including CNNs map and CapsNets
map, for saliency prediction (See Fig. 7). Quantitative and
visual advantages of our TIA over ECA [53] can be found in
Sec. IV-C.

4) Difference to PWHCNet [19]: When interacting contrast
cues and part-whole relational cues, PWHCNet [19] adopts
the CapsNets cues as the self-spatial activation to attend
the CNNs cues, while our TIA activates the CNNs cues
to generate the self-channel activation, which is used to
attend the CapsNets cues. Due to the fact that the channel-
wise activation is efficient over the spatial-wise activation
in terms of computational efficiency, our work achieves a
computationally efficient mechanism over PWHCNet [19],
as can be seen from Table III.

E. Loss Function

In this work, we adopt both weighted BCE loss (Lwbce)
[54] and weighted IoU loss (Lwiou) [54] as our loss function
to train the network, i.e.,

Loss = Lwbce + Lwiou . (8)

Lwbce and Lwiou can be calculated as follows:

Ls
wbce = −

H∑
i=1

W∑
j=1

(1 + γαi j )
1∑

l=0
1(gs

i j = l)logPr(ps
i j = l|9)

H∑
i=1

W∑
j=1

γαi j

,

(9)

Ls
wiou = 1 −

H∑
i=1

W∑
j=1

(gs
i j × ps

i j ) × (1 + γαs
i j )

H∑
i=1

W∑
j=1

(gs
i j + ps

i j − gs
i j × ps

i j ) × (1 + γαs
i j )

,

(10)

where γ is a hyperparameter. 1(·) is a calibration function. ps
i j

and gs
i j represent the saliency value of the location of each

2In this paper, “feature maps” means intermediate features with multiple
channels. In contrast, “saliency prediction map” means one-channel inference
map.
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TABLE I
QUANTITATIVE COMPARISON OF OUR TCGNET WITH OTHER SOD METHODS. RED, GREEN AND BLUE

REPRESENT FOR THE TOP THREE METHODS, RESPECTIVELY

pixel for saliency prediction and ground truth, respectively. 9

denotes all the parameters of the model and Pr(ps
i j = l|9) is

the predicted probability.

IV. EXPERIMENT

In this section, we will evaluate and take a deep study on
the proposed method with abundant experiments and analyses.

A. Setup Details

1) Datasets: Following previous works, we adopt five
public datasets for evaluation, including ECSSD [55],
DUTS [57], DUT-OMRON [58], PASCAL-S [56] and HKU-
IS [24].

ECSSD [55] contains 1000 images with complicated
structures, which are collected from the Internet.

PASCAL-S [56] contains 850 images, which can better
demonstrate the semantic segmentation capability of the
network.

DUTS [57] contains 10533 training images and 5019 test
images, which are with different scenes and various sizes.

DUT-OMRON [58] has 5168 images with different sizes
and complex structures.

HKU-IS [24] consists of 3000 training images and 1447 test
images, which are with multiple disconnected objects.

We choose the training dataset of DUTS [57] to train the
model.

2) Evaluation Criteria: We evaluate the performance of our
model as well as other state-of-the-art methods from both
visual and quantitative perspectives. The quantitative metrics
include weighted F-measure (Fβ ) [63], Mean Absolute Error
(M AE) [63], S-measure (Sm) [64], and E-measure (Em) [65].
Given a continuous saliency map, a binary mask B̂ is achieved
by thresholding the saliency map B. Precision is defined as
Precision =

∣∣∣B̂ ∩ G
∣∣∣/∣∣∣B̂

∣∣∣, and recall is defined as Recall =∣∣∣B̂ ∩ G
∣∣∣/|G|.

F-measure is an overall performance indicator, which is
computed by

Fβ =

(
1 + β2) Precision × Recall

β2 Precision + Recall
. (11)

As suggested in [63], β2
= 0.3.

M AE is defined as

M AE =
1

Ŵ × Ĥ

∑
i

|B (i) − G (i)|, (12)

where Ŵ and Ĥ are the width and height of the image,
respectively.

S-measure (Sm) [64] is computed by

Sm = αSo + (1 − α) Sr , (13)

where So and Sr represent the object-aware and region-aware
structure similarities between the prediction and the ground
truth, respectively. α is set to 0.5 [64].

E-measure (Em) [65] combines local pixel values with
the image-level mean value to jointly evaluate the similarity
between the prediction and the ground truth.

3) Implementation Details: The proposed model is imple-
mented with PyTorch and trained for 35 epochs with a batch
size of 10 using an NVIDIA GeForce RTX 3090 GPU (24G
memory). We adopt HRNet [51], pretrained on ImageNet [66],
to initialize the parameters of our backbone. The input images
have been resized to 352 × 352 resolution and enhanced with
random horizontal rotation and color smoothing. We choose
the SGD optimizer [67] with a momentum of 0.9 and weight
decay of 0.0005. The learning rate is set to 0.001 and adjusted
by a poly strategy with a power of 0.9. The training time of
the model is 12.5 hours.

B. Comparison With the States-of-the-Arts

To better evaluate the performance of our model, we com-
pare the proposed architecture with 21 state-of-the-art SOD
methods, including 14 CNNs based methods (AFNet [28],
BASNet [59], PoolNet [60], ASNet [39], PAGE [40],
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Fig. 8. Visual comparison of other state-of-the-art models. From top to bottom: Strong contrast, small objects, high similarity between foreground and
background, strong light, and night scape.

TABLE II
ABLATION STUDY FOR THE PROPOSED METHOD. THE BEST METHOD IS MARKED BY RED

TDBU [41], MINet [15], ITSD [14], F3Net [54], PFSNet [61],
LGSL [62], RCSBNet [42]) TRACER [44] and MEMNet [43],
1 Transformer based method (VST [29]), and 6 CapsNet based
methods (TSPOANet [68], PWHCNet [19], POCINet [18],
DCR [49], ICON [23]).

1) Quantitative Comparisons: Table I lists Fw
β , Sm , max Em

and MAE values of different methods. It is obvious that
our method outperforms other methods on almost all the
datasets regarding these four metrics. Especially, we perform
best in terms of all metrics on ECSSD [55]. Besides, our
method achieves three best metrics on complicated DUTS [57]
and DUT-OMRON [58]. Compared with the best compared
method, i.e., MEMNet [43] which achieves 6 best metrics, our
model achieves 13 best metrics, which indicates our model has
the superiority on various scenes over MEMNet [43] and other
methods.

2) Visual Comparisons: Visual comparisons between our
model and other methods are shown in Fig. 8. To make
the comparison more sufficient, we display various scenes,
including strong contrast, small objects, high similarity
between foreground and background, strong light, and night
scape. It is obvious that most the state-of-the-art methods
cannot handle all the listed scenes with introductions of noise
or incomplete shapes. By contrast, our proposed method not
only locates the salient objects accurately, but also ensures the
integrity in every situation. This gets benefit from the primitive
interaction mechanism for contrast from CNNs and part-whole
relations from CapsNets in our model.

Fig. 9. Visual comparisons of different components. (a) Image, (b) GT,
(c) TBIE, (d) TBIE + MTCC, (e) TBIE + TIA, (f) TBIE + MTCC + TIA.

C. Ablation Studies

We conduct the ablation experiments to verify the
contributions of our main components. All these models
described below are trained on the same DUTS training
datasets under the same implementation details described
in IV-A.3.

1) Effectiveness of Components: We verify the performance
of each component by testing various simplified versions
of our model. Table IV-C-i) lists performance of different
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Fig. 10. Visual comparisons of different module versions. (a) Image; (b) GT;
(c) SCMC [19]; (d) POGU [18]; (e) OURS (MTCC).

versions of the proposed model. As shown in Table IV-C-i),
only using TBIE without other two modules can well tackle
the task of saliency detection with good performance. The
combinations of “TBIE + MTCC” and “TBIE + TIA” both
surpass the baseline TBIE, which proves the effectiveness
of the proposed MTCC and TIA. Ulteriorly, the whole
model covering TBIE, MTCC, and TIA achieves a further
performance gain. As shown in Fig. 9, on top of the baseline,
i.e., TBIE, MTCC enhances the object shapes capture (e.g.,
rows 1 & 3) and object details (e.g., row 4), and TIA
strengthens the object wholeness (e.g., row 1). The joint force
of MTCC and TIA predicts the salient maps close to the
ground truth. In summary, the proposed MTCC and TIA
contribute significantly to the whole model for the task of
saliency prediction.

2) Integration Mechanisms for Contrast and Part-Whole
Relations: Our MTCC integrates contrast cues and part-whole
relational cues for saliency prediction. To study its superiority,
we compare our MTCC with two related integration mech-
anisms for contrast and part-whole relationships, including
SCMC [19] and POGU [18]. For fair comparisons, we replace
our MTCC with these two mechanisms in our framework for
training. As Table IV-C-ii) shows, under the same setting,
our MTCC beats SCMC [19] and POGU [18]. Visually in
Fig. 10, our MTCC achieves better object wholeness (e.g.,
top three rows) and inner details (e.g., bottom row), compared
with SCMC [19] and POGU [18]. This indicates our MTCC
interact more efficiently contrast and part-whole relations than
SCMC [19] and POGU [18].

3) TIA vs. ECA [53]: To take a deep study on our TIA,
we compare it with a related work, i.e., ECA [53]. Specially,
we replace our TIA with ECA [53] within the proposed
network architecture for fair comparisons. As represented
in Table IV-C-iii), TIA beats ECA with a significant gap.
As shown in Fig. 11, our TIA performs better for salient
object detection in terms of objects wholeness and details.
These observations prove that our TIA attends those primitive
CNNs features and part-whole relations from CapsNets with a

Fig. 11. Visual comparisons of different module versions. (a) Image; (b) GT;
(c) ECA [53]; (d) OURS (TIA).

more intelligent attention mechanism compared with ECA [53]
for salient object detection.

4) CNNs Map vs. CapsNets Map for Attention: In our
TIA, CNNs prediction map is activated to attend CapsNets
prediction map. To take a deep insight into TIA, we compare
our TIA with a modified version, named TIA∗, in which
CapsNets prediction map is activated to attend the CNNs
prediction map. As listed in Table IV-C-iv, our TIA beats TIA∗

by a lot. Visually in Fig. 12, the saliency maps learned by our
TIA obtain better object wholeness and inner details than those
of TIA∗. The improvements of TIA over TIA∗ demonstrates
the superiority of the attention mechanism of our TIA for
saliency prediction.

5) Coarse Map vs. Feature Maps for MTCC: To study the
effectiveness of the coarse maps of CNNs and CapsNets in
MTCC, we compare our framework with a modified version,
named MTCC-FM, in which the feature maps instead of
coarse maps of CNNs and CapsNets are employed for MTCC.
As listed in Table IV-C-v), our MTCC performs better than
MTCC-FM by a large margin. Besides, Fig. 13 describes some
visual results of MTCC and MTCC-FM. It can be found
that MTCC-FM produces much noise in the saliency map,
while our MTCC predict the accurate salient objects. This is
because that multiple channels of feature maps in MTCC-
FM inevitably contain some noisy channels, which causes
the degradation of performance. By contrast, the coarse maps
learned from multiple feature maps in MTCC has cleared the
noise to some extent, which improves the performance a lot.

6) MTCC vs. Addition/Multiplication: To explore the role
of MTCC for the interaction of CNNs prediction map
and CapsNets prediction map, we compare it with two
modified versions, named MTCC-A and MTCC-M, which
are implemented by directly integrating CNNs prediction map
and CapsNets prediction map via addition and multiplication,
respectively. As listed in Table IV-C-vi), our MTCC is
superior over MTCC-A and MTCC-M, which indicates that
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Fig. 12. Visual comparisons of different module versions. (a) Image; (b) GT;
(c) TIA∗; (d) OURS (TIA). TIA∗ means a modified TIA version, in which
CapsNets prediction map is activated to attend the CNNs prediction map.

Fig. 13. Visual comparisons of different module versions. (a) Image; (b) GT;
(c) MTCC-FM; (d) OURS (MTCC). MTCC-FM employs the feature maps
instead of coarse maps of CNNs and CapsNets for MTCC.

the inter-type correlation guidance strategy of MTCC performs
better than the simple addition and multiplication guidance
strategies. Besides, as depicted in Fig. 14, our MTCC produces
the saliency maps close to the ground truth, while MTCC-A
and MTCC-M predict poor ones.

7) Complexity: To study the computational complexity of
our model with respect to the related CapsNets based salient
detectors, Table III lists FLOPs and inference time of different

Fig. 14. Visual comparisons of different module versions. (a) Image; (b) GT;
(c) MTCC-A; (d) MTCC-M; (e) OURS (MTCC). MTCC-A and MTCC-M,
are implemented by directly integrating CNNs prediction map and CapsNets
prediction map via addition and multiplication, respectively.

TABLE III
COMPLEXITY COMPARISON WITH CAPSNETS SALIENCY METHODS. TOP

TWO METHODS ARE MARKED BY RED AND GREEN, RESPECTIVELY

Fig. 15. Failure cases. From top to bottom: Image; GT; saliency maps.

CapsNets based methods. It shows that our model achieves the
lowest FLOPs and second best inference time. That proves
that our model shares a good efficiency within the scope of
CapsNets based saliency detection.

D. Failure Case

Despite our method achieves promising performance, there
are still many challenges. Fig. 15 depicts some failure cases.
The salient objects in images of Fig. 15 are characterized with
some scene semantics instead of simply high-contrast regions,
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which challenge our framework. In the future, we will take
into account the salient semantics [38], [69] to improve our
model on the real-world scene understanding.

V. CONCLUSION

In this paper, we have proposed a framework to extract
the coherence between contrast cues and part-whole relations
for salient object detection. Our key idea is integrating the
correlations of these two cues from CNNs and CapsNets and
let them interact. For more in-depth interaction, we have also
developed an attention mechanism involving these two types
of semantics to infer saliency. The evaluation of our model on
five datasets has shown our excellent performance compared
with other state-of-the-art methods. In the future, we will
take into account salient semantics for high-level saliency
understanding.
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